
TCP Master HOW-TO

@version@ (@date@)

by Dieter Wimberger

Table of contents

1 About..2

2 What is a Master?...2

3 What is a Discrete Input?... 2

4 Classes of Interest for the Developer... 3

5 Implementation.. 3

Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

1. About

This document is a tutorial for writing Modbus/TCP Master applications utilizing the jamod
library. It explains the basics and walk's you through a simple command line Master
implementation, that will allow you to read that will allow you to read the state of one or
more discrete input's from a slave on the network.
If you are new to Modbus, it is highly recommended to first take a look at Understanding the
Protocol (../kbase/protocol.html) (especially the section about the TCP implementation) as
well as the actual protocol specifications.

Note:
The application build in the tutorial is actually part of the distribution codebase (net.wimpi.modbus.cmd.DITest
(../api/net/wimpi/modbus/cmd/DITest.html)).

2. What is a Master?

Thinking in terms of the Client-Server network computing paradigm, the Master application
is a client. It establishes a connection with the slave (i.e. the server) and uses this connection
for sending a Request to the slave, from which a Response will be received.
As described in Understanding the Protocol (../kbase/protocol.html) , each cycle of Request
and Response is called a Transaction. Figure 1 shows a simple graphical representation of
such a cycle:

Modbus Transaction

Table 1: Figure 1: Modbus Transaction
The master can pull or poll (repeatedly) data from a source (data acquisition), as well as
control a device. In the latter case it is often recommended to understand the mode of
operation of the slave device. Industrial remote I/O's for example might have a mechanism
(i.e. a watchdog) to ensure predictable behavior when the communication with the master is
lost. Thus ensure to study the documentation of the particular device you are working with.
The simplenetwork setup for this tutorial is composed of two nodes, as depicted in Figure 2.

Network setup

Table 2: Figure 2: Network Setup

3. What is a Discrete Input?

According to the Modbus data model, which is part of the protocol specification (see section
4.3) a Discrete Input is a single bit (i.e. 0 or 1, false or true), read-only "data item", which is
usually provided by an I/O system. Figure 3 shows an example with simple switches that are

TCP Master HOW-TO

Page 2
Built with Apache Forrest
http://forrest.apache.org/

../kbase/protocol.html
../kbase/protocol.html
../api/net/wimpi/modbus/cmd/DITest.html
../kbase/protocol.html
http://forrest.apache.org/
http://forrest.apache.org/

mapped into the slave's process image in form of discrete inputs. The example master
application will be capable of obtaining the state of these DI's from the slave.

Slave with DI's

Table 1: Figure 3: Slave with DI's

Note:
Related information is available in Understanding the Process Image (processimage.html) .

4. Classes of Interest for the Developer

The motivation for creating jamod was to achieve an intuitive and object oriented
implementation of the protocol, in a way, that there is a natural mapping from the domain
knowledge (i.e. Modbus protocol) to the abstract class model. The important elements in the
description above (What is a Master?) have been highlighted and the following list
represents the mapping between them and the classes from jamod that will be needed for a
master implementation:

• Connection: TCPMasterConnection
(../api/net/wimpi/modbus/net/TCPMasterConnection.html)

• Transaction: ModbusTCPTransaction
(../api/net/wimpi/modbus/io/ModbusTCPTransaction.html)

• Request: ModbusRequest (../api/net/wimpi/modbus/msg/ModbusRequest.html)
(respectively it's direct known subclass ReadInputDiscretesRequest
(../api/net/wimpi/modbus/msg/ReadInputDiscretesRequest.html))

• Response: ModbusResponse (../api/net/wimpi/modbus/msg/ModbusResponse.html)
(respectively it's direct known subclass ReadInputDiscretesResponse
(../api/net/wimpi/modbus/msg/ReadInputDiscretesResponse.html))

5. Implementation

As the idea is to provide a tutorial in form of a very simple command line example, it will
consist of only one class and most of the work will be done in the entry method (public
static void main(String args[])). This is probably not the way jamod will be
usually employed in OO designs, but we hope it serves the demonstrative purpose.

Before we start with coding, let's take a look at the simplified interaction diagram of the
application, given as Figure 4. The part most interesting for this tutorial is colored blue, but
note that the diagram also contains a little bit of the things that happen behind the scenes (i.e.
within the Transport, with writeRequest() and readRequest()), which are there
to give a more complete picture.

TCP Master HOW-TO

Page 3
Built with Apache Forrest
http://forrest.apache.org/

processimage.html
../api/net/wimpi/modbus/net/TCPMasterConnection.html
../api/net/wimpi/modbus/io/ModbusTCPTransaction.html
../api/net/wimpi/modbus/msg/ModbusRequest.html
../api/net/wimpi/modbus/msg/ReadInputDiscretesRequest.html
../api/net/wimpi/modbus/msg/ModbusResponse.html
../api/net/wimpi/modbus/msg/ReadInputDiscretesResponse.html
http://forrest.apache.org/
http://forrest.apache.org/

Sequential Interaction Diagram

Table 1: Figure 4: Simplified Master Interaction Diagram
Now let's start writing code. We need a simple Java application skeleton, with imports of all
jamod packages:

import java.net.*;
import java.io.*;
import net.wimpi.modbus.*;
import net.wimpi.modbus.msg.*;
import net.wimpi.modbus.io.*;
import net.wimpi.modbus.net.*;
import net.wimpi.modbus.util.*;

public class DITest {

public static void main(String[] args) {
try {
...
...

} catch (Exception ex) {
ex.printStackTrace();

}
}//main

}//class DITest

Next we add the instances and variables the application will need:

/* The important instances of the classes mentioned before */
TCPMasterConnection con = null; //the connection
ModbusTCPTransaction trans = null; //the transaction
ReadInputDiscretesRequest req = null; //the request
ReadInputDiscretesResponse res = null; //the response

/* Variables for storing the parameters */
InetAddress addr = null; //the slave's address
int port = Modbus.DEFAULT_PORT;
int ref = 0; //the reference; offset where to start reading from
int count = 0; //the number of DI's to read
int repeat = 1; //a loop for repeating the transaction

Next the application needs to read in the parameters:

1. <address [String]> as InetAddress into addr
optionally the port might be added to the address as :<port>, and read into port.

2. <register [int16]> as int into ref
3. <bitcount [int16]> as int into count
4. {<repeat [int]>} as int into repeat, 1 by default (optional)

TCP Master HOW-TO

Page 4
Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

//1. Setup the parameters
if (args.length < 3) {
System.exit(1);

} else {
try {
String astr = args[0];
int idx = astr.indexOf(':');
if(idx > 0) {
port = Integer.parseInt(astr.substring(idx+1));
astr = astr.substring(0,idx);

}
addr = InetAddress.getByName(astr);
ref = Integer.decode(args[1]).intValue();
count = Integer.decode(args[2]).intValue();
if (args.length == 4) {
repeat = Integer.parseInt(args[3]);

}
} catch (Exception ex) {
ex.printStackTrace();
System.exit(1);

}
}

These will be used subsequently to setup and open the connection as well as prepare a
request and a transaction:

//2. Open the connection
con = new TCPMasterConnection(addr);
con.setPort(port);
con.connect();

//3. Prepare the request
req = new ReadInputDiscretesRequest(ref, count);

//4. Prepare the transaction
trans = new ModbusTCPTransaction(con);
trans.setRequest(req);

No we are ready for action. The last part is executing the prepared transaction the given
(repeat) number of times and then for cleanup, close the connection:

//5. Execute the transaction repeat times
int k = 0;
do {
trans.execute();
res = (ReadInputDiscretesResponse) trans.getResponse();
System.out.println("Digital Inputs Status=" +

res.getDiscretes().toString());
k++;

} while (k < repeat);

TCP Master HOW-TO

Page 5
Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

//6. Close the connection
con.close();

That's all. Pretty simple no?.
The following is an example output with (debug enabled) of the application run against a test
slave:

Fangorn:~/development/java/jamod wimpi$ java -Dnet.wimpi.modbus.debug=true
\
-cp build/classes net.wimpi.modbus.cmd.DITest localhost:5555 0 4 3

Connected to localhost/127.0.0.1:5555
Request: 00 00 00 00 00 06 00 02 00 00 00 04
Response: 00 00 00 00 00 04 00 02 01 50
Digital Inputs Status=00001010
Response: 00 01 00 00 00 04 00 02 01 50
Digital Inputs Status=00001010
Response: 00 02 00 00 00 04 00 02 01 50
Digital Inputs Status=00001010

Note:
The debug outputs of the library can be activated by passing the property net.wimpi.modbus.debug to the JVM (i.e. java
-Dnet.wimpi.modbus.debug=true) and allow to see the actually exchanged modbus messages encoded as hex.

TCP Master HOW-TO

Page 6
Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

	1 About
	2 What is a Master?
	3 What is a Discrete Input?
	4 Classes of Interest for the Developer
	5 Implementation

